FILL UP THE BLANKS

1.	Carbohydrates are or, derivatives of polyhydric alcohols.				
2.	are those carbohydrates that cannot be hydrolysed into simpler carbohydrates.				
3.	Disaccharides are condensation products of two units				
4.	test is employed to distinguish carbohydrate from other substances				
5.	Addition of Molisch reagent and sulphuric acid with carbohydrate solution will give				
	colour at the junction of two liquid				
6.	Benedict's test is used to distinguish and				
7.	test is used to distinguish monosaccharaides from disaccharides				
8.	test is used to distinguish aldo sugar from keto sugar				
9.	test is employed to distinguish reducing monosaccharide and reducing				
10					
10.	Resorcinol test with fructose will give colour precipitate				
11. 12	Deep blue colour is formed when fructose is treated with sulphuric acid and				
12.	cobait initiate test with indiciose will give colour				
15. 14	and tests are used to confirm lastose sugar				
14. 15	and tests are used to commininactose sugar				
15. 16	A solution of reducing sugar when heated with phenyl hydrazine, characteristic vellow				
10.	crystalline compounds called are formed.				
17.	Action of Fehling's solution with monosaccharides gives colour precipitate				
18.	Process of treating sucrose with hydrochloride is called as				
19.	test is employed for identification of polysaccharides				
20.	Starch will give colour with iodine				
21.	polysaccharide will give reddish brown with iodine				
22.	test is employed to distinguish mono and disaccharides with polysaccharides				
23.	Needle shaped crystals formed in osazone test confirms monosaccharide				
24.	Sugars that contain group will act as reducing agent				
25.	The estimation of glucose was developed by German Chemist in 1849				
26.	The end point in the estimation of glucose is				
27.	The indicator used in the estimation of glucose is				
28.	Methylene blue is indicator				
29.	Sucrose is a sugar				
30.	The word "sucrose" was coined in 1857 by the English chemist				
31.	Non-reducing sugars are characterized by the absence of an structure				
32.	Sugar solution on hydrolysis with acid becomes sugar				
33.	Sucrose on hydrolysis form equimolar of and				
34.	The factor used for converting glucose to sucrose is				
35.	10 ml of Fehling's solution is reduced by gram of glucose				
36.	is stored in roots, tubers, stems, fruits and cereals				
37.	method is advocated to estimate starch content in a sample				
38.	Starch is made up of and				
39.	The factor to convert glucose to starch is				
40.	Starch on hydrolysis give colour on treating with anthrone				

- 42. Fructose and Glucose can be distinguished by _____
- 43. The reagent used for distinguishing a reducing monosaccharide from a reducing disaccharide is _____
- 44. _____ will answer Molisch test
- 45. In carbohydrates, _____ and _____ are functional groups
- 46. Fructosan is obtained in _____ test
- 47. Estimation of amino acid in a solution was proposed by_____
- 48. An example of essential proteins is _____
- 49. Amino acids is called as _____
- 50. The end point in the estimation of amino acid is _____
- 51. The indicator used in the estimation of amino acid is _____
- 52. _____ are the building blocks of proteins
- 53. Amino acids are compounds containing an____ and a ____ group
- 54. Amino acid exist as Zwitter ions, to make it acidic, ______ added to amino acid solution
- 55. All proteins are constructed from the same ubiquitous set of _____ amino acids.
- 56. Proteins are dehydration polymers of amino acids, with each amino acid residue joined to its neighbour by a specific type of _____
- 57. Protein on heating becomes _____
- 58. The ______ is a chemical test used for detecting the presence of peptide bonds.
- 59. Formation of ______ in biuret test indicates the presentation of proteins.
- 60. Xanthoproteic acid reaction is done to identify ____
- 61. Reaction of protein with heat or acid or alkali will cause _____
- 62. Xanthoproteic acid reaction with protein will give orange colour due to the nitration of
- 63. Denaturation of protein results in formation of _____ protein
- 64. Million test will give ______colour on treatment with proteins
- 65. When protein is boiled with a dilute solution of Ninhydrin, a ______ is produced
- 66. A violet colour is produced on treating protein with _____
- 67. _____ colour is obtained when lead acetate solution is added to protein solution
- 68. Protein solution when added to glyoxylic acid and sulphuric acid gives _____ colour
- 69. ____Test will give violet colour when glyoxylic acid and sulphuric acid is added to egg albumin
- 70. Amino acid reacts with formalin to form _____
- 72. Lipids are organic compounds formed mainly from _____ and _____
- 73. Lipids are organic compounds formed mainly from alcohol and fatty acids combined together by _____ linkage
- 74. The mineral salt of fatty acid is called a _____.
- 75. ______defined as the number of milligrams of potassium hydroxide required to neutralize the free fatty acids present in one gram of fat
- 76. Acid value measures _____ of oil
- 77. The free fatty acid content is known as _____ or _____
- 78. Acid number indicates the degree of _____ of fat

79.	The normal acid value for most samples lies within		
80.	Acid value is the measure of rancidity		
81.	The high acid number will indicate that the oil is and		
82.	Fatty acid + glycerol will give		
83.	The free fatty acid content is known as		
84.	1 ml of 0.1 N KOH reacts with g of oleic acid		
85.	1 ml of 0.1 N KOH reacts with g of Palmitic acid		
86.	1 ml of 0.1 N KOH reacts with g of Lauric acid		
87.	is the indicator used in the estimation of acid value		
88.	Keeping quality of oil depends on content		
89.	The end point in the estimation of acid value is		
90.	The iodine value is a measure of the degree of in oil.		
91.	Iodine value is a useful parameter in studying of oils		
92.	Oils contain and fatty acids		
93.	Iodine gets incorporated into the fatty acid whenever bonds exists		
94.	is the indicator used in the estimations of iodine value		
95.	is the end point in the estimation of iodine value		
96.	One ml of 0.1 N Na ₂ S ₂ O ₃ is equivalent to g of I_2		
97.	flask is used for estimation of iodine value in oil		
98.	Unsaturated fatty acids can be converted into saturated by the process of		
99.	If the iodine number is between 0-70, it will be a		
100.	If the value exceeds 70 it is an		
101.	value oils are prone to oxidation and polymerization		
102.	The is the number of grams of iodine absorbed by 100g of the oil/fat		
103.	Number of double bonds in relation to the amount of lipid present is known by		
104.	Higher the iodine value, greater the degree of		
105.	Saponification literally means		
106.	Number of milligrams of KOH required to completely saponify 1 g oil is		
107.	Process by which the fatty acids in the glycerides are hydrolysed by an alkali is referred		
	to as		
108.	Saponification value is useful for comparative study in oils		
109.	The indicator used in the estimation of saponification value is		
110.	One ml of 0.5 N HCl g of KOH		
111.	The saponification number is a measure of the averageof the triacylglycerol's		
	in a sample		
112.	Saponification value is proportional to the mean molecular weight of fatty acids (or		
	chain length).		
113.	Saponification value is inversely proportional to the fatty acids		
114.	Fats (triglycerides) upon alkaline hydrolysis yield and		
	- ···· (·······························		
115.	Rancidity of oil brought about by the action of air is		
115. 116.	Rancidity of oil brought about by the action of microbes is		
 115. 116. 117. 	Rancidity of oil brought about by the action of air is Rancidity of oil brought about by the action of microbes is Peroxide value is a measure of contained in oil		
 115. 116. 117. 118. 	Rancidity of oil brought about by the action of air is Rancidity of oil brought about by the action of microbes is Peroxide value is a measure of contained in oil is the indicator used in the estimation of peroxide of oil		

- 120. ______ titration is involved in the estimation of peroxide value
- 121. _____ is one of the most widely used tests for oxidative rancidity
- 122. Peroxide value is the concentration of _____ groups in edible oils
- 123. High peroxide values are a definite indication of a _____ fat
- 124. Fresh oil has peroxide value below _____ meq/kg
- 125. Vitamin C is otherwise is called as _____
- 126. _____ is the richest source of ascorbic acid
- 127. The natural vitamin C exists in _____ form.
- 128. 2, 6-dichlorophenol indophenol dye, which is _____ in alkaline solution and ____ in acid solution
- 129. Ascorbic acid is a strong reducing agent and gets oxidized to _____ by 2, 6 dichlorophenol indophenol dye
- 130. The indicator used in ascorbic acid estimation is _____
- 131. The end point in the estimation of vitamin C in juice is _____
- 132. Ascorbic acid (Vitamin C) is a strong _____ agent
- 133. The Ninhydrin test is used to detect the presence of _____ and proteins that contain free

PROBLEMS

1)	Estimate the degree of unsaturation of given oil using the following data				
	Weight of oil taken for analysis $= 1.0$ g				
	Volume of 0.1 N Na ₂ S ₂ O ₃ consumed in the blank titration = 30 ml				
	Volume of 0.1 N Na ₂ S ₂ O ₃ consumed in the experimental titration = 5 ml				
2)	Calculate the amount of sucrose present in the given sugar solution using th				
	following data				
	Volume of sugar solution taken for inversion $= 20$ ml				
	Total volume of inverted sugar solution prepared $= 200 \text{ ml}$				
	Volume of inverted sugar solution consumed in the reduction = 12.3 ml				
3)	Calculate the amount of acid value of a given oil based on the following data				
	Weight of oil taken for analysis $= 10$ g				
	Volume of 0.1 N KOH consumed in the titration = 15.5 ml				
4)	Calculate the amount of ascorbic acid in given lime fruit				
	Weight of lime fruit taken for analysis $= 30$ g				
	Volume of the sample made up with $= 250 \text{ ml}$				
	Volume of sample extract taken for dye titration $= 25$ ml				
	Volume of dye required (titre) = 15.7 ml				
5)	State the vegetable oil is rancid or not based on the following data				
	Weight of oil taken for analysis = $Wg - 1 g$				
	Volume of sodium thiosulfate consumed in sample titration $= 77$ ml				
	Volume of sodium thiosulfate consumed in blank titration = 4 ml				
6)	Find out the amount of free acid present in coconut oil based on the following data				
	Weight of oil taken for analysis = 1.65 g				
	Volume of 0.5 N HCl consumed in the blank titration $= 27.4$ ml				
	Volume of 0.5 N HCl consumed in the experimental titration $= 11.2$ ml				
7)	Determine the amount of amino acid in a given solution based on the following data				
	Volume of aliquot taken for analysis = 20 ml				
	Volume of 0.02 N NaOH consumed in sample titration = 54 ml				
	Volume of 0.02 NaOH consumed in blank titration = 2 ml				
8)	Determine the amount of aldo sugar in given solution using the following data				
	Volume of glucose solution consumed in the reduction $= 13.5$ ml				
9)	Calculate the amount of starch present in the given sample based on following data				
	Weight of starch material taken for nalysis $= 0.5$ g				
	Volume of starch extract sample made up to $= 500 \text{ ml}$				
	Volume of aliquot taken for analysis $= 0.5$ ml				
	Volume of aliquot made up to $= 5 \text{ ml}$				
	Concentration of glucose read from the graph $= 65$ ppm				

SOLUTIONS

FILL UP THE BLANKS

Sl.No	Answer	Sl.No	Answer
1	Aldose and Ketose	35	0.05
2	Monosaccharides	36	Starch
3	Monosaccharides	37	Anthrone
4	Molisch	38	Amylose and Amylopectin
5	Reddish violet or purple	39	0.9
6	Reducing and Non-reducing sugar	40	Green Colour
7	Barfoed's test	41	Cuprous oxide
8	Seliwanoff's Test	42	Resorcinol test/ Seliwanoff's Test
9	Barfoed's test	43	Barfoed's test
10	Red colour precipitate	44	Carbohydrate
11	Ammonium Molybdate	45	Aldo and Keto
12	Violet colour	46	Osazone
13	Osazone and Potassium Ferricyanide	47	S. P. L. Sorensen
14	Osazone and Mucid test	48	Histidine
15	Glucose and Fructose	49	Zwitter ions
16	Osazone	50	Appearance of pink color
17	Red colour precipitate	51	Phenolphthalein
18	Inversion	52	Amino acids
19	Iodine	53	Amine and carboxyl
20	Blue	54	formaldehyde
21	Glycogen	55	Twenty
22	Molisch	56	Covalent bond(Peptide Bond)
23	Glucose and fructose	57	Denatured
24	Aldehyde	58	Biuret test
25	Hermann von Fehling	59	Purplish Violet Colour
26	Red colour precipitate	60	Nitration of benzene nucleus
27	Methylene blue	61	Denaturation/Coagulation
28	Redox indicator	62	Benzene rings
29	Non-reducing/ Disaccharide	63	Single strand proteins
30	William Miller	64	Brick red
31	Open structure	65	Blue colour
32	Invert sugar	66	Glyoxylic acid + H ₂ SO ₄
33	Glucose and Fructose	67	Black colour
34	0.95	68	Violet colour

Sl.No	Answer	Sl.No	Answer
69	Hopkin- Cole's Test	103	Iodine value
70	Methylene amino acid	104	Unsaturation
71	Oleic, Palmitic and Lauric acids	105	Soap making
72	Glycerol and fatty acid	106	Saponification
73	Ester	107	Saponification
74	Soap	108	Chain length
75	Acid value	109	Phenolphthalein
76	Rancidity	110	28.05
77	Acid number or acid value	111	Molecular weight
78	Purity	112	Inversely
79	0.5	113	Molecular
80	Hydrolytic	114	Fatty acid and glycerol
81	Old and Rancid	115	oxidative
82	Triglycerides or fat	116	Ketonic
83	Acid number/acid value	117	Rancidity
84	0.0282 g	118	Starch
85	0.0256 g	119	Acetic acid + chloroform
86	0.02 g	120	Iodometric
87	Phenolphthalein	121	Peroxide value
88	Free fatty acid	122	(-0-0-)
89	Appearance of faint pink color	123	Rancid
90	Unsaturation	124	10
91	Rancidity	125	Ascorbic acid
92	Saturated and Unsaturated	126	Orange
93	Double bonds	127	L ascorbic acid
94	Starch	128	Blue and Red
95	Disappearance of blue colour	129	dehydro ascorbic acid
96	0.0127 g	130	Self-indicator
97	Iodine	131	Appearance of pink colour
98	Hydrogenation.	132	Reducing agent
99	Fat	133	Amino acid, Amino
100	Oil		
101	Higher iodine		
102	Iodine value		
		-	

PROBLEM

1. Estimate the degree of unsaturation of given oil using the following data Weight of oil taken for analysis = 1.0 g Volume of 0.1 N Na₂S₂O₃ consumed in the blank titration = 30 ml Volume of 0.1 N Na₂S₂O₃ consumed in the experimental titration = 5 ml Actual volume of 0.1 N Na₂S₂O₃ solution utilized by the oil = (30 - 5) = 25 ml 1 ml of 0.1 N Na₂S₂O₃ solution (F) = 0.0127 g of iodine 25 ml of 0.1 N Na₂S₂O₃ solution = 0.0127 x 25 g of Iodine 1 g of oil absorbed = 0.0127 x 25 g of iodine % of iodine absorbed by the oil = $0.0127 \times 25 \times 100$ = 31.75 1

Result

Iodine value of fat = **31.75 g/100g**

2. Calculate the amount of sucrose present in the given sugar solution using the following data

Volume of sugar solution taken for inversion = 20 ml Total volume of inverted sugar solution prepared = 200 ml Volume of inverted sugar solution consumed in the reduction = 12.3 ml 10 ml of Fehling's solution is reduced by = 0.05 g (F) of glucose 12.3 ml of inverted sugar solution contains = 0.05 g of glucose 200 ml of inverted sugar solution contains = 0.05 g of glucose 12.3 20 ml of sugar solution contains = 0.05×200 g of glucose

Percentage of glucose in the sugar solution = $\frac{0.05 \times 200 \times 100}{12.3 \times 20}$ of glucose.

Percentage of sucrose present in the sugar solution = $\% 4.06 \times 0.95 = 3.86$ **Result**

Percentage of sucrose present in the sugar solution = 3.86 3. Calculate the amount of acid value of a given oil based on the following data Weight of oil taken for analysis = 10 g Volume of 0.1 N KOH consumed in the titration = 15.5 ml 1 ml of 0.1 N KOH reacts with (F1) = 0.0282 g of Oleic acid 1 ml of 0.1 N KOH reacts with (F2) = 0.0256 g of Palmitic acid 1 ml of 0.1 N KOH reacts with (F3) = 0.02 g of Lauric acid 15.5 ml of 0.1 N KOH reacts with 0.0282 x 15.5 g of oleic acid 15.5 ml of 0.1 N KOH reacts with 0.0256 x 15.5 g Palmitic acid 15.5 ml of 0.1 N KOH reacts with 0.02 x 15.5 g of Lauric acid 15.5 ml of 0.1 N KOH reacts with 0.02 x 15.5 g of Lauric acid 16.1 N KOH reacts with 0.02 x 15.5 g of Lauric acid 17.5 ml of 0.1 N KOH reacts with 0.02 x 15.5 g of Lauric acid 17.5 ml of 0.1 N KOH reacts with 0.02 x 15.5 g of Lauric acid 17.5 ml of 0.1 N KOH reacts with 0.02 x 15.5 g of Lauric acid 17.5 ml of 0.1 N KOH reacts with 0.02 x 15.5 g of Lauric acid 17.5 ml of 0.1 N KOH reacts with 0.02 x 15.5 g of Lauric acid 17.5 ml of 0.1 N KOH reacts with 0.02 x 15.5 g of Lauric acid 17.5 ml of 0.1 N KOH reacts acid = 0.0282 x 15.5 x 100 = 4.371 10 10 Acid value as % Palmitic acid = 0.0256 x 15.5 x 100 = 3.968 10 Acid value as % of Lauric acid = $0.02 \times 15.5 \times 100 = 3.10$

Result

- 1. Acid value as % of oleic acid = 4.371
- 2. Acid value as % of Palmitic acid = 3.968

3 Acid value as % of Lauric acid = 3.10

4. Calculate the amount of ascorbic acid in given lime fruit Weight of lime fruit taken for analysis = 30 g Volume of the sample made up with = 250 ml Volume of sample extract taken for dye titration = 25 ml Volume of dye required (titre) = 15.7 ml Ascorbic acid in 25 ml of the sample extract = 0.1×15.7 mg Therefore, ascorbic acid in 250 ml of the extract = 0.1×15.7 , x 100 250

Since 30g sample was made up to 250 ml, ascorbic acid content of the sample (mg per 100 g)

10

 $\frac{0.1 \text{ x } 15.7 \text{ x } 250 \text{ x } 100}{25 \text{ x } 30} = 52.33 \text{ mg}/100\text{g}$

Result

Ascorbic acid content of the sample =.52.33 mg per 100 g

5. State the vegetable oil is rancid or not based on the following data Weight of oil taken for analysis = Wg - 1 gVolume of sodium thiosulfate consumed in sample titration = 35 ml Volume of sodium thiosulfate consumed in blank titration = 4 ml Actual volume of sodium thiosulfate consumed to absorb iodine = (35-4) ml The normality of sodium thiosulfate = N/500 or 0.002 N Peroxide value (meq. /Kg sample) = (35 - 4) x 0.002 X 1000 = 62 1

Result

Peroxide value of vegetable oil = 62. Meq peroxide/kg of sample Interpretation

Since the peroxide value of vegetable oil is 62 which is less than 75, it is not rancid

6. Find out the amount of free acid present in coconut oil based on the following data Weight of oil taken for analysis = 1.65 g Volume of 0.5 N HCl consumed in the blank titration = 27.4 ml Volume of 0.5 N HCl consumed in the experimental titration = 11.2 ml Actual volume of 0.5 N HCl utilized by the oil = (27.4-11.2) ml The amount of KOH utilized by 1.65 g of oil = $56.11 \times 0.5 \times (27.4 - 11.2)$ g of KOH Saponification value = $56.11 \times 0.5 \times (27.4-11.2)$ = 275.441.65

Result: Saponification value of coconut oil = **275 44 mg/g**

7) Determine the amount of amino acid in a given solution based on the following data Volume of aliquot taken for analysis = 20 mlVolume of 0.02 N NaOH consumed in sample titration = 54 ml Volume of 0.02 NaOH consumed in blank titration = 2 ml Actual volume of 0.02 N NaOH required to neutralize the amino acid = (54-2) ml Strength of the amino acid (N) = $(54 - 2) \times 0.02 = 0.05$ 20 Concentration of amino acid $= 0.05 \times 75$ 3.9 (g/l) = (Equivalent weight of the simplest amino acid (glycine) is 75) Result 1. The strength of amino acid solution is 0.05 2. Concentration of amino acid is 3.9 g/l 8) Determine the amount of aldo sugar in given solution using the following data Volume of glucose solution consumed in the reduction = 13.5 ml 10 ml of Fehling's solution is reduced by = 0.05g (F) of glucose. 13.5 ml of glucose solution contains = 0.05 g of glucose. Percentage of glucose present in the sample solution = $0.05/13.5 \ge 100 = 0.37$ **Result:** Percentage of glucose present in the given sample solution = 0.379) Weight of starch material taken for nalysis = 0.5 g Volume of starch extract sample made up to = 500 ml Volume of aliquot taken for analysis = 0.5 ml Volume of aliquot made up to = 5 mlConcentration of glucose read from the graph = 65 ppm 500) ml of sample extract contains = 65×5 g of glucose $10^6 \ge 0.5$ 0.5 g of sample contains = $65 \times 5 \times 100$ g of glucose $10^{6} \ge 0.5$ 100 g of sample will contain $= 65 \times 5 \times 500 \times 100$ g of glucose $10^6 \ge 0.5 \ge 0.5$ = 65Percent starch in the given sample = $65 \times 0.9 = 58.5$ **Result:**

Percentage of starch present in the given sample = 58.5